Word Polarity Detection Using a Multilingual Approach

نویسندگان

  • Cüneyd Murad Özsert
  • Arzucan Özgür
چکیده

Determining polarity of words is an important task in sentiment analysis with applications in several areas such as text categorization and review analysis. In this paper, we propose a multilingual approach for word polarity detection. We construct a word relatedness graph by using the relations in WordNet of a given language. We extend the graph by connecting the WordNets of different languages with the help of the Inter-Lingual-Index based on English WordNet. We develop a semi-automated procedure to produce a set of positive and negative seed words for foreign languages by using a set of English seed words. To identify the polarity of unlabeled words, we propose a method based on random walk model with commute time metric as proximity measure. We evaluate our multilingual approach for English and Turkish and show that it leads to improvement in performance for both languages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detection

Due to the huge volume and linguistic variation of data shared online, accurate detection of the sentiment of a message (polarity detection) can no longer rely on human assessors or through simple lexicon keyword matching. This paper presents a semi-supervised approach in constructing essential toolkits for analysing the polarity of a localised scarce-resource language, Singlish (Singaporean En...

متن کامل

NSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis

This paper describes our deep learningbased approach to multilingual aspectbased sentiment analysis as part of SemEval 2016 Task 5. We use a convolutional neural network (CNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect extraction as a multi-label classification problem, outputting probabilities over aspects parameterized by a threshold. To determine the senti...

متن کامل

INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis

This paper describes our deep learningbased approach to multilingual aspectbased sentiment analysis as part of SemEval 2016 Task 5. We use a convolutional neural network (CNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect extraction as a multi-label classification problem, outputting probabilities over aspects parameterized by a threshold. To determine the senti...

متن کامل

EBL-Hope: Multilingual Word Sense Disambiguation Using a Hybrid Knowledge-Based Technique

We present a hybrid knowledge-based approach to multilingual word sense disambiguation using BabelNet. Our approach is based on a hybrid technique derived from the modified version of the Lesk algorithm and the Jiang & Conrath similarity measure. We present our system's runs for the word sense disambiguation subtask of the Multilingual Word Sense Disambiguation and Entity Linking task of SemEva...

متن کامل

Cross-domain polarity classification using a knowledge-enhanced meta-classifier

Current approaches to single and cross-domain polarity classification usually use bag of words, n-grams or lexical resource-based classifiers. In this paper, we propose the use of meta-learning to combine and enrich those approaches by adding also other knowledge-based features. In addition to the aforementioned classical approaches, our system uses the BabelNet multilingual semantic network to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013